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Abs t rac t - -The  classification proposed here for folded layers is based on the use of two parameters,  p] and P2 
(modified to P l and p~) which are related to the variation in slope of the curves that describe orthogonal thickness 
vs dip. Each fold limb is represented by a point on a p~-p~ diagram. From p; and p~ it is possible to obtain a 
one-dimensional statistical variable (intercept value t~o ) which characterizes the geometry of folds and 
complements the proposed classification. The fold classification method suggested is easy to use and it has 
considerable advantages in the geometrical analysis of large sets of folds. In addition, it can be applied to the 
theoretical analysis of fold geometry, to the comparative regional studies of fold and to the analysis of 
geometrical variations in a folded multilayer. 

INTRODUCTION 

THE knowledge of fold geometry is a basic requirement 
to investigate folding mechanisms. Owing to the abun- 
dance of this type of structure in nature, it is necessary to 
have classifications which allow information about fold 
geometry to be organized and statistically analysed. 
Such working tools must allow the comparative study of 
large groups of folds. The morphological description of 
folds has focused on two aspects: the geometry of single 
folded surfaces and the geometry of folded layers. 

The fold classification proposed by Hudleston (1973a) 
for the profiles of cylindrically folded surfaces was a 
significant advance, because the geometry of each pro- 
file is characterized as a two-dimensional statistical vari- 
able. An alternative classification has been proposed by 
Twiss (1988); however, its application to natural folds 
has not yet been widely used. 

Based on a study of thickness variations in a folded 
layer, Ramsay (1962) suggested that similar and parallel 
folds represent the two end members of a range of 
possible fold geometries. Subsequently, Ramsay (1967, 

pp. 359-369) developed a fold classification which was 
based on the dip-isogon pattern and variations with the 
dip (a) of the thickness perpendicular to layering (t') or 
parallel to axial surfaces (T') (Fig. la). In this model, 
each limb is characterized by a t', curve whose position 
and geometry determine the class of fold. Ramsay 
differentiated three fold classes: class 1, class 2 (similar 
folds) and class 3, with three subclasses of class 1 folds: 
1A, 1B (parallel folds) and 1C. The geometry of these 
classes is shown in Fig. l(b). In order to make the 
classification more precise, Ramsay (1967, p. 370) also 
suggested using the first two derivatives of the thickness 
in comparison to the dip, since the fold class is controlled 
by the slope variation of the tangent to the curve t~, 
rather than by its position inside the fields in Fig. l(b). 

A problem with Ramsay's classification is the diffi- 
culty in obtaining the best location of the reference 
thickness (to) to determine t'. In order to solve this 
problem, Hudleston (1973a) modified Ramsay's classifi- 
cation by the application of a new parameter (~a), 
defined as the angle between the normal to the tangents 
drawn to either fold surface at angle of dip a, and the 
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Fig. 1. (a) Definitions of orthogonal thickness (t,I) and thickness parallel to axial surface (T~,) of a folded layer (after 
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isogon. However, Ramsay's classification has been the 
most commonly used until the present. 

Subsequently, Treagus (1982) proposed a fold classifi- 
cation that relates the geometry of a fold to the cleavage. 
This classification is based on the variation between the 
cleavage trace and the normal to bedding, defined as the 
fl angle. This classification does not replace that of 
Ramsay or Hudleston, but represents a complement to 
them. 

Ramsay's classification provides an excellent tool for 
analysing the geometry of single folds. However, its 
application to natural folds presents some difficulties. 
First, unless done by computer, the analysis is very 
laborious. Second, it is unsuitable for statistical analysis 
of large data sets. Yet, such sets are frequent, whether in 
outcrops of a region or in individual multilayers. In such 
cases, comparing large numbers of t" curves is difficult, 
because it must be done visually. One example of such 
difficulties can be seen in Davis's work (1975, fig. 5) on 
the folding off a gneiss dome complex in the Rincon 
Mountains (Arizona); the t" curve swarms which appear 
in the diagrams of the different domains considered 
make it hard to draw conclusions about the geometry of 
the folded layer sets, based on a truly quantitative 
analysis. 

The need to synthesize the results obtained from 
Ramsay's classification was considered by Hudleston 
(1973b), who analysed a large number of minor folds 
developed in the Moine rocks of Monar (Scotland). In 
order to transform a t" curve into a single parameter, 
Hudleston projected t~ 2 against cos 2 a and obtained the 
intercept value of the best-fit straight line. Although this 
method is useful, it is very laborious, because it requires 
each fold to be classified by Ramsay's method and the 
curve of each limb to be fitted by means of a least- 
squares linear regression program. Besides, the method 
implies a loss of information on individual fold geom- 
etry. Hudleston (1973b) complemented it by the use of 
t" curves. 

The aim of this paper is to establish a simple classifi- 
cation of folded layers, based on Ramsay's classifi- 
cation, but which is quicker to use than the preceding 
classifications, and which allows the representation of 
fold limb shape as a single point on a diagram. From this 
classification, it is very easy to obtain an intercept value, 
comparable to the one used by Hudleston (1973b), 
which allows the geometry of folded layers to be ana- 
lysed by means of a one-dimensional statistical variable. 
This method will greatly facilitate statistical analysis of 
large data sets of folded layers. 

BASIS OF THE FOLD CLASSIFICATION 
METHOD 

Begin with a t" curve from a fold limb, in which point 
O represents the hinge (Fig. 2). The curve must be 
continuous; experience shows that most curves have a 
simple geometry, with an extreme value of t ' ,  often the 
maximum, at the origin, and with the other extreme 
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Fig. 2. Definition of angles fll and f12 from the t'. curve. 

value at the other end of the curve. Two parameters that 
allow the best possible description of the geometry of the 
curve must be found. In Fig. 2, it is required that the 
abscissa scale for 90 ° equals 0.9 on the ordinate scale 
(t '). Consider two points, A and B. A is the point of the 
curve where the abscissa equals amafl2, and B the final 
point of the curve with an abscissa amax. Draw the line 
segments, OA and AB, and define two parameters, Pt 
and P2, as: 

Pl = tan/31 = 100(1 - t'mJ2) 
amax /2  (1) 

P2 = tan/~2 = 100(t~m"x/2 --  t~m"x) 

amax /2  

These parameters can be used to describe the geom- 
etry of the t~ curve. Parameters Pl and P2 represent 
mean slopes of parts of the curve (note that these 
parameters are not the same as P1 and P2 in Ramsay 
1967, pp. 350-351). Thus a simplepl vsp2 graph (Fig. 3) 
offers a means of classifying folds as each fold limb can 
be represented by a single point. The line corresponding 
to the parallel fold (Ramsay's subclass 1B) in Fig. l(b) 
will lie at the origin on the Pl-P2 diagram in Fig. 3. For 
amax = 90 °, the curve corresponding to similar folds 
(Ramsay's class 2) in Fig. l(b) will be represented by 
point 2 in Fig. 3. The graph (Fig. 3) contains several 
fields and lines on which points that represent fold 
classes are plotted. The 1A, 1C and 3 fold classes of 
Ramsay's classification lie on three of these fields. The 
other fields and all of the lines represent folds composed 
of two different classes in Ramsay's classification, one 
class corresponding to parameter P l, and the other top2. 
For instance, field 3-1C will represent folds that are of 
Ramsay's class 3 for a < amax/2 and of class 1C for 
a > a m a x / 2 .  

Figure 4 shows representative t~ curves for the differ- 
ent fields of the PFP2 diagram. As the diagram shows, 
the fold class is determined by the slope of the curve t" 
and not strictly by the field in the a-t" diagram in which 
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the curves are situated. In this sense, the Pl-P2 diagram 
sometimes represents the fold class better than the curve 
t~ itself, since Pl and P2 closely define the mean curve 
slope. 

Since natural folds are not generally isoclinal, am,x 
will not usually be 90 ° . Some problems derive from this 
fact; for example, the limb shown in curve OAB in Fig. 
5(a) will be represented on the P]-P2 diagram (Fig. 5b) 
by a point S (s 1, s2) situated within the field correspond- 
ing to class 1C folds and will not plot at the same position 
as one representing the similar fold limb given by OAB' 
(point S'(s;, s~) in Fig. 5b). This means that folds which 
belong to a given class in the t~,-a diagram lie within 
different fields on the Pl-P2 diagram, depending on the 
maximum limb dip. This is clearly not acceptable. To 
avoid this, it is necessary to ensure that any t" curve 
corresponding to a similar fold shape, as is the case for 
OAB in Fig. 5(a), is represented by point S in Fig. 5(b), 
regardless of the value of area x. TO do this, the results are 
transformed so that the sides of parallelogram ORST 
become those of parallelogram OR'S'T'. This can be 
done by means of a transformation with matrix: 

(s,;s, 0) 
$2]$2 

= 8011 - cos (Ctmax/2)] 0 (2) 

X0 
\ 180[cos (am.~/2) - cos a m ~ ] / /  

where the angles are expressed in degrees. The displace- 
ments of the sides of rectangle ORST derived from this 
transformation are indicated by the vectors represented 
in Fig. 5(b). 

As the elements in the leading diagonal of A are 
functions of am~x, a fixed transformation can be deduced 
for each value of amax. Consider now curve OCD (Fig. 
5a) which has the same value of amax as OAB. Point P 
will represent values p] and P2 of curve OCD on the 
diagram of Fig. 5(b). This point undergoes the trans- 
formation defined by matrix A, and becomes point 
P'(pi,p~), whose co-ordinates, according to expressions 
(1), will be given by: 
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and P, representing of the curve OCD, into P'. 

p~ = (1 - t~,,xn)(2 - V~)/0.9[1 - cos (amax/2)] (3) 

p~ = ( t ' m . j 2  - / ' . , . x ) V ~ / 0 . 9 [ c o s  (amax/2)  --  COS ~max]" (4) 

These are the values that are plotted on the modified 
PrP2 diagram (p;-p~ diagram). Similarly, each t,~ curve 
with area × < 90 ° will undergo the transformation defined 
in (2). 

The t~0 value obtained from expressions (3) and (4), 
for O~ma x = 90 °, can be used as an intercept value com- 
parable to that used by Hudleston (1973a). This value is 
given by: 

t~0 = 1 - 0.45(p{ + p~) (5) 

from which the geometry of folded layers can be ana- 
lysed as a one-dimensional statistical variable. 

Geometrical properties of  the ponts on the p]-p~ diagram 

In order to know if the points on thepl-p~ diagram are 
a good representation of the geometry of folded layers, 
it is important to relate the geometry of a t~ curve (OAB 
in Fig. 6a) to the position of the corresponding point on 
the Pl-P~ diagram (R in Fig. 6c). 

The t~, curve may be divided into two sections: OA 
and AB (Fig. 6a). The first part is characterized by the 
parameter Pl and the second part by the parameter p~. 
From expressions (3) and (4), for (Zma x = 90 °, t~5 and t~o 
can be found, whose values allow points A' and B' to be 

defined. The slopes (with reversed sign) of segments 
OA' and A 'B '  are equal to p] and p~, respectively. 

For the section characterized by p~, from points 
A ( a m a x / 2 ,  tam,,x/2) , A'(45, t~5) and R (p~,p~) it is easy to 
demonstrate that the following relations are satisfied 
(Figs. 6a & c): 

a l i a  2 ' , = = al/a 2 a{/a~ 

or in the same way, 
p 

1 - -  tam.x~2 

t 

lain.x~2 - cos(am.,/2) 

1 - t~5 

t~5 - ~/2/2 

(6) 

These expressions indicate that, for this section of the 
t~ curve, the transformation preserves the distance ratio 
of points A, A'  and R with regard to the lines represen- 
tative of class 1B and 2 folds. 

However, for the section characterized by p~, anal- 
ogous relationships to those of (6) and (7) are not, in 
general, satisfied. This is due to the position of this 
section on the a-t" diagram, which is a factor of the 
location of point A (fold class is determined by the slope 
variation of the t~ curve and not its position). This is the 
reason why Ramsay (1967, p. 370) used the derivative 
(dt'/da) to make his classification more accurate. Ordi- 
natep~ of point R on the p;-p~ diagram is determined by 
the value of area x and the second section mean slope of 

0.9p~ 
(7) 

2 - ~ - 0.9p] 
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the t" curve, showing correctly the fold class for this 
section. The b]/b'~ value on thep~-p~ diagram (Fig. 6c) is 
the same as b~/b~ value on the a-t'~ diagram (Fig. 6b), for 
a section A1B1 with the same slope and amax as AB, if: 

b l / b  2 = bilbO. (8) 

Furthermore, analogous relations to (6) and (7) are 
satisfied for the second section of the t~ curve only if 
condition (8) is satisfied. In such a case (OAIBt curve in 
Fig. 6b, and point S in Fig. 6c), the distance ratios for 
both sections become equal (Figs. 6b & c), 

C l / C  2 =- ~ t = Cl/C 2 = C~'/c~ = b l / b  2 b~/b~ = b~'/b'~ = K (9) 

or in the same way, 

1 - t'm,,,/2 

t'm,,x/2 - COS(amax/2 ) 

1 - t~5 1 - t'  1 - t~0 amax 

t~5-  V~/2 t' a ... .  - -  COS ~ m a x  tg0 

0.9p] 0.9p~ = 
= 2 - ~ - 0 . 9 p i - ~ - 0 . 9 p ~  K. (10) 

Expression (10) implies that 

xd  
t 

p~ 2 _ - ~ p  ,. (11) 

Substituting (11) in (4), equating expressions (3) and 
(4), and finding t[~ ..... then, 

t' (1 - -  t ~ a ~ j z ) [ C O S ( a m a x [ 2 )  - -  COS a m a x ]  (12) 
am~, = t'm,~/2 -- 1 -- COS(amax/2 ) 

which is the other condition implied by equalities (10). 
A set of t~ curves which satisfy the conditions ex- 

pressed by (10), for different values of K, are shown in 

Fig. 7(a). Every section in a given curve which starts 
from point O(0,1) will be represented by the same point 
on the p~-p~ diagram. The points of the p~-p~ diagram 
which represents the curves of Fig. 7(a) are shown in Fig. 
7(c). These points are situated along diagonal OT, so 
that relation r/s is equal to the corresponding value of K. 
This accounts for the fact that the condition expressed by 
(11) is the equation of the diagonal. 

Figure 7(b) represents a set of t" curves which do not 
satisfy the conditions expressed by (10). Every curve on 
this figure corresponds to the same point on the p~-p~ 
diagram (point D in Fig. 7c). An overestimation of the 
curve section that has the highest slope would result 
from an extrapolation of these curves. However, the 
curve sections which correspond to p] and p~ are 
weighted by the transformation defined in (2). 

APPLICATION OF THE FOLD CLASSIFICATION 
M E T H O D  

To classify a fold using the p~-p~ method the pro- 
cedure is as follows. 

(1) Thicknesses to, ta .... and t ...... /2 and the angle amax 
are measured andthen t'm~ X = t ..... /to and t'm~,x n = t ..... /a/to 
are determined. 

(2) Expressions (3) and (4) or the graphs of Fig. 8 are 
used to determine p~ and p~ and then these parameters 
are represented on the diagram. In order not to lose the 
O~ma x value with the classification, different symbols can 
be used for the points on the diagram representing the 
different intervals of the amax values. 

Expression (5) can be used to obtain the intercept 
value t~o. 
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Examples 

In order to demonstrate the applicability of the classi- 
fication method, three different cases have been con- 
sidered. 

(1) Flattened parallel folds. The method of the p]-p~ 
diagram has been applied to the t" curves deduced by 
Ramsay (1962, 1967) for flattened parallel folds (Fig. 
9a). Figure 9(b) shows that the points representing these 
curves on the p~-p~ diagram define a trajectory within 
field 1C for each ~max value. As the amount of flattening 
increases, the point shifts from the origin (parallel folds) 
to the point representing similar folds. For any given 
flattening (~V/,~2/,~ 1), as am,x increases, the points of Fig. 
9(b) come closer to the line 1C-lB. This is due to the fact 
that, for high dips, the t" curve slope decreases and the 
fold approaches class 1B, which is recorded on the p~-p~ 
diagram by a reduction of the p~ value. 

(2) Folds in the West Asturian-leonese Zone (Variscan 
belt, NW Spain). Mesoscopic folds in the same gener- 
ation (F1), deforming lower Palaeozoic quartzitic rocks 
from two different units of this zone (Navia and Mondo- 
fiedo Nappe units) (Bastida 1980) have been classified 
(Fig. 10). Navia Unit rocks show lower deformation and 
metamorphic grade than those in the Mondofiedo 
Nappe Unit and foliation ($1) is present in both units. 
The plots of the Mondofiedo Nappe folds (p~-p~ dia- 
gram and intercept values histogram) show the centre of 
gravity location in p]-p~ diagram (Fig. 10a) and the 
position of the mean intercept value (Fig. 10b) closer to 
class 2 point than the plots of the Navia unit folds (Figs. 
10c & d). The p]-p~ points from the Mondofiedo unit 
show lower dispersion than those of the Navia unit. 

(3) Folds in a multilayer. Hand specimen-scale folds, 
folding a multilayer of Devonian marbles and metape- 
lites (Fig. l la)  from the Axial Zone of the Pyrenees (N 
Spain), have been classified. In the Pl-P~ diagram (Fig. 
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1 lb), p~ values lower than 0.2 and p~ values lower than 
0.6 are unusual. Most of these folds belong to classes 1C, 
3 or to a combination of both. Folds in the multilayer 
show the mean intersection value (Fig. l lc)  and the 
centre of gravity in p~-p~ diagram approaching class 2 
folds. In the p~-p~ diagram, the points which represent 
folds in metapelitic layers have higher values ofp~ andp~ 
than those in the marble layers. In Fig. l l (a) ,  the folded 
layers have been differentiated according to the class 
they belong to. The fold geometry frequently varies 
from having limbs of class 1C to class 3-1C whereas 
limbs of class 3 alternate with limbs of class 1C-3. 

Geometry of folded layers vs geometry of single folded 
surfaces 

The fact that the geometry of a folded layer can be 
represented by its intercept value t~o offers the possi- 

bility of relating such geometry to the shape of folded 
surfaces. According to Hudleston (1973a), the shape of 
a limb profile in a single folded surface can be rep- 
resented by means of the ratio (b3/bl) between coef- 
ficients b 3 and bt of the Fourier series which is 
representative of this profile; this ratio can be obtained 
by the visual method devised by the quoted author. It is 
then possible to construct a diagram of b3/bl against t~0 
to relate the geometry of folded layers to the shape of 
folded surfaces. However, a problem arises because 
each folded layer is limited by two folded surfaces. One 
way of solving this problem is by representing the 
average value of b3/bl for both surfaces. This type of 
diagram applied to folds in Fig. 11 shows that relation- 
ship between single folded layers shape and Ramsay's 
fold classes does not draw a trend (Fig. 12). Neverthe- 
less, the graph shows the main features of the fold 
geometries. 
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DISCUSSION AND CONCLUSIONS 

The p~-p~ diagram method presented in this paper 
offers several advantages. The method is easy and fast 
because it only involves the measurement of three values 
of the orthogonal thickness (to, ta .... and tam,,/2 ) for each 
limb, that is represented by one point on the p~-p~ 
diagram. Therefore, the method allows representation 
of a large number of folds in a single diagram and also 
allows easy visualization of differences in geometry. 

The parameters p~ and p~ reflect the geometry of t~ 
curves, since they represent mean values of the curve 
slope for the corresponding sections. Thus, the points on 
the pl-p& diagram are a good representation of the 
geometry of folded layers, allowing folds composed of 
two different classes to be distinguished and trends in 
changes in fold geometry to be noticed within a field of 
the diagram. In Ramsay's classification, the fold class is 
determined by the slope of the t~ curves, rather than by 
their position within a given field of the a-t" diagram, 
and so a more accurate classification requires in addition 

the derivatives of t~. Another advantage of the pl-p~ 
method is that averaging the slope of the t~ curve 
reduces the effect of the error in selecting reference 
points where the dip is taken as zero. 

Once p~ and p~ are known, the intercept value t~o is 
very easy to obtain, and represents a parameter that can 
be used as a one-dimensional statistical variable easy to 
analyse. The use of this value alone implies a loss of 
information on the geometry of individual folds, be- 
cause folds with different t" curves may have the same t~o 
value. However, it constitutes a useful complement of 
the p~-p~ method. 

The intercept value t~o can be related with other 
geometrical fold parameters. In this way, the b3/b 1 vs t~o 
graph allows both the geometry of single folded surfaces 
and the geometry of folded layers to be shown. 

The proposed fold classification method discriminates 
the different geometries of folds throughout a multilayer 
and allows a comparative analysis of folds in regional 
studies. This classification method also permits the com- 
parison of natural fold geometry and the geometry of 



78 F. BASTIDA 

.25 

.2 

.15 

..Q .1 

rC~ 

v 

.05 

t ,d 
n 

• " r  O -  
lD 

- . 0 5  - 

- .1  

MUDLESTON'B AMPLITUDE (A) 
+ I.S ,~ A < 2.5 
• 2.5  ~ A < 3 . 5  

X 315 ~ A < 4) 5 
O 4 . 5  ~ A < 5 . 5  

-D (PARABOLAS) 

s i n e  w o v e s  - -  4" 

4- 

F" ~ . . . .  

- F  ( C H E V R O N  F O L D S )  

I I 

@ 

o 

It 
c. • w 

x x T4,1q 

T~ 

O 

• ÷o • • • 
x 

• X 

• ~;  " 4-~5-~ • • • qW O ÷  
XO X + ÷ • 

O 0  

X 

i 
I I I I I I I 

1 . 2  -1  - - . 8  - . 6  - . 4  - . 2  0 . 2  . 4  . 6  . 8  ! 

I 
I N T E R C E P T  V A L U E  t 9 0  

Fig. 12. Diagram showing the intercept value (to) against the single folded surface shape (b3/bl) for folds in Fig. 11. C, D, 
E and F are the shapes in Hudleston's classification. 1A, 1B, IC, 2 and 3 are the fold classes in Ramsay's classification. The 
points on the graph show a stratified pattern due to the non-continuous range of b3/bl value in Hudleston's (1973a) visual 

classification method. 

t.2 

folds obtained from laboratory or deduced from theor- 
etical studies, in order to provide a better understanding 
of the folding process. 

Acknowledgements--This work received financial support from Proj- 
ect C.I.C.Y.T. GEO-89 372-CO2-01. I wish to thank the Structural 
Geology group of Oviedo University for many helpful discussions. I 
also thank D. L. Brown, A. Gonz;ilez Pozueta, A. Ojanguren and S. 
Phipps for comments and help with the English version of the manu- 
script. I should also like to extend my thanks to N. Mancktelow, an 
anonymous referee, and S. H. Treagus, whose comments and sugges- 
tions helped to clarify and improve the manuscript. 

REFERENCES 

Bastida, F. 1980. Las estructuras de la primera fase de deformaci6n 

herciniana en la Zona Asturoccidental-leonesa (costa cantlibrica, 
NW de Espafia). Unpublished thesis, University of Oviedo. 

Davis, G. H. 1975. Gravity-induced folding off a gneiss dome com- 
plex, Rincon Mountains, Arizona. Bull. geol. Soc. Am. 86,979-990. 

Hudleston, P. J. 1973a. Fold morphology and some geometrical 
implications of fold development. Tectonophysics 16, 1-46. 

Hudleston, P. J. 1973b. The analysis and interpretation of minor folds 
developed in the Moine rocks of Monar, Scotland. Tectonophysics 
17, 89-132. 

Ramsay, J. G. 1962. The geometry and mechanics of formation of 
"similar" type folds. J. Geol. 70, 309-327. 

Ramsay, J, G. 1967. Folding and Fracturing of Rocks. McGraw-Hill, 
New York. 

Ramsay, J. G. & Huber, M. 1987. The Techniques of Modern 
Structural Geology, Volume 2: Folds and Fractures. Academic 
Press, London. 

Treagus, S. H. 1982. A new isogon-cleavage classification and its 
application to natural folds and model fold studies. Geol. J. 17, 49- 
64. 

Twiss, R. J. 1988. Description and classification of folds in single 
surfaces. J. Struct. Geol. 10,607-623. 


